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Abstract. We have studied the preparation of organic-inorganic hybrid polymer 

precursors by sol-gel technique and their utilization for nanostructured optical 

components for photonic applications. The gel polymer precursors were prepared 

from siloxane modified by polymerizable acrylate groups, which can be 

processed further by photopolymerization process. Molecular structure 

characterizations by means of the FTIR measurements indicate the conversion of 

C=C bonds into C-C bonds after photopolymerization. This bond conversion 

produces high cross-linking between the organic and inorganic moieties, 

resulting in thermally stable and chemically resistant thin polymer layer which 

provide unique advantages of this material for particular optical/photonic 

applications. By employing laser interference technique, gratings with 

periodicity between 400-1000 nm have been successfully fabricated. Application 

of those sub-micron periodicity of grating structure as active elements in 

optically pumped polymer laser system and Surface Plasmon Resonance (SPR) 

based measurement system have been also explored. The experimental results 

therefore also show the potential applications of this hybrid polymer as a 

building material for micro/nano-photonics components.  

Keywords: hybrid polymers; nano-optics; optically pumped polymer laser; pulsed 

laser interference; sol-gel materials; surface Plasmon resonance. 

1 Introduction 

Functional polymers have attracted much attention for various applications in 

conventional optics, micro/nano-optical components, such as photonic band gap 

(PBG) structure, and micro-electro-mechanic systems (MEMS) [1-6]. Easiness 

in fabrication process, which commonly does not require high temperature, is 

one of the main advantages of polymers. Such processing condition allows the 
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incorporation of various kinds of functional organic dyes. High temperature 

requirement in glass and ceramic processing prevents the incorporation of 

functional organic dyes, which will decompose a thigh temperature. Acrylic and 

epoxy polymers, such as poly(methylmetacrylate) (PMMA) and SU-8, are 

typical examples of polymers commonly used for those purposes, including 

modern optic applications, such as fiber optics, optical interconnect 

components, solid-state dye lasers, and optical amplifiers [1,2,7-9]. However, 

some disadvantages related to optical transparency, thermal stability, chemical 

resistance and mechanical strength often restrict further development of their 

applications for functional optical and photonic components. 

In the last decade, organic-inorganic hybrid polymers, which are also called as 

Ormosils or ORMOCERs polymers, have been much investigated because of 

their interesting physical-chemical properties [10-14]. These hybrid polymers 

are commonly made from silicon alkoxides that are modified with 

polymerizable organic groups, such as acrylic, methacrylic or epoxy, resulting 

in the formation of inorganic and organic cross-linked network. According to 

the classification given by Sanchez, these kinds of hybrid polymers are 

classified as Class II, where the organic and inorganic components are linked 

together by strong chemical bonds (covalent or ionic bonding) [10,11]. The 

inorganic network is formed by sol-gel process, which is adapted from the sol-

gel method commonly appliedfor preparing sol-gel derived inorganic glasses 

and Class I organic-inorganic hybrid materials since more than three decades 

ago. The Class I hybrid materials, which are derived from tetraethoxysilane 

(TEOS) or tetramethoxysilane (TMOS), have been successfully employed for 

various applications ranging from bulk glasses to optical fibers, thin film 

coatings, ultra-pure powders and multifunctional materials [15-17]. However, it 

seems that those Class I hybrid materials are not feasible to be applied for 

building complicated structures, particularly micro/nano-structures.  

In Class II hybrid polymers, the organic network can be formed by 

photopolymerization of the polymerizable organic groups, offering the 

possibility of fabrication methods by photolithography, laser direct writing or 

other novel fabrication techniques [13,14]. Fabrication of micro and nano-

structured optical/photonic components using these hybrid polymers have been 

demonstrated by using those techniques [13,14,18,19]. This paper presents the 

precursor gel preparation of this class of hybrid polymer from methacrylate-

ester modified siloxane by sol-gel technique and its application for constructing 

diffractive optic based components, such as Distributed Feedback (DFB) 

grating for photopumped lasers and grating based Surface Plasmon Resonance 

(SPR) coupler. In this work, laser interference technique using high power 

pulsed UV laser was applied for fabricating those gratings, which is distinctly 

different from the fabrication methods in previous reports mentioned above 
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[18,19]. 

2 Methodology 

Precursor gels of hybrid polymers were synthesized from 3-

(Trimethoxysilyl)propyl methacrylate (TMSPMA)by sol-gel route. Monomer 

solution was prepared by dissolving TMSPMA monomer in a mixture solution 

of water and ethanol. For use in the fabrication of DFB grating for 

photopumped lasing purpose, this monomer solution was added with organic 

laser dye, either Rhodamine 6G (R6G) or4-dicyanmethylene-2-methyl-6-(p-

dimethyl-aminostyryl)-4H-pyran (DCM). However, this monomer solution 

wasused without addition of any organic laser dye for use in the fabrication of 

SPR grating coupler. Those monomer solutions were then processed by sol-gel 

method as described elsewhere with some modification in its processing 

conditions, until gel formed as its final product [20]. Thin films of polymer 

precursor gel were prepared by spin casting technique after addition of a small 

amount of photoinitiator (Irgacure 819) into the precursor gel solution. Those 

gel films were subjected to UV photocuring using a Hg lamp or a 

semiconductor laser (405 nm). Basic molecular structure characterization was 

carried out by means of FTIR spectroscopy, whereas basic optical 

characterizations were carried out by UV-Vis spectroscopy and thin film 

reflectometry. 

Fabrication ofDFB grating structure with laser interference technique was 

performed by using Lloyd mirror configuration, as illustrated schematically in 

Figure1, and the frequency-tripled (THG) output of Nd-YAG laser(355 nm) as 

the coherent light source. The interfering light beams at the precursor gel film 

will be absorbed by photoinitiator resulting in photopolymerization rate that 

varies spatially following the formed interference pattern. Those laser 

interfering beams both in scribe interference pattern and cure the precursor gel. 

Therefore, the wavelength of this laser beam can be also referred as curing 

wavelength, namely curing = 355 nm. The laser power was about 200 mW with 

beam diameter of about 1.2 cm, which is equivalent to laser fluence of about 18 

mJ/cm
2
. The pulse duration was about 10 ns and the number of pulses was 

about 2-5times. The grating surface structure was investigated by Atomic Force 

Microscopy (AFM). The grating periodicities were determined from those AFM 

images.  

In order to investigate the possibility and characteristics of photopumped lasing 

in those fabricated DFB gratings, the grating was placed in a photopumped laser 

configuration optically pumped by a strip-line shaped laser beam from the 

frequency doubled Nd-YAG laser (pump = 532 nm). In order to investigate the 

fabricated grating as a SPR grating coupler, the grating was previously covered 
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by very thin Ag layer of about 50 nm thickness. This coupler element was then 

placed and evaluated in a SPR spectroscopy system as described in literatures 

[21,22]. 

 
Figure 1 Setup of laser interference using Lloyd mirror for grating structure 

fabrication. θi is the incident angle of laser beam. 

3 Results and Discussion 

3.1 Molecular Characterizations of Products 

The whole reaction of sol-gel process involves the hydrolysis of silicon 

alkoxides and then followed by a cascade of condensation and poly-

condensation reactions, resulting in the formation of inorganic Si-O-Si network, 

as indicated in the Scheme 1 [11,14]. The photopolymerization reaction occurs 

through radical polymerization mechanism which involves radical initiation and 

chain elongations resulting in the formation of cross-linked methacrylate 

network, as indicated in Scheme 2 [14]. After photopolymerization, according 

to Scheme 2, there will be a change in molecular structure due to the conversion 

of carbon-carbon double bond (C=C) into carbon-carbon single bond(C-C) in 

methacrylic group.  

Scheme 1. Reactions involved in sol-gel process, where R is methoxy group. 

 SiOR + H2O  SiOH + ROH (1) 

 SiOH + HO-Si  Si-O-Si + H2O (2) 

 SiOH + RO-Si  Si-O-Si + ROH (3) 

Scheme 2. Reactions involved in photopolymerization, where I is initiator 

molecule, r* is radical and R′ is methacrylic group. 
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 r*   +   SiR′     r(SiR′)* (5) 

 r(SiR′)n* + r(SiCR′)m*   2(r(SiR′)n+m) (6) 

Figure 2 shows the FTIR spectra of hybrid polymer precursor gel measured 

before and after photopolymerization. In comparison between the FTIR 

spectrum of TMSPMA monomer and the precursor gel (before 

photopolymerization), infrared absorption bands at  = 800 cm
-1

 and 1100 cm
-1

 

were significantly suppressed [23]. Those absorption bands are related to the 

suppression of symmetric and asymmetric stretching of Si-O bonds, 

respectively. The suppression of those bands thus indicates the formation of 

inorganic network. As evident in Figure 2, after photopolymerization, the 

absorption band at 1635 cm
-1

 decreases indicating the reduction of C=C 

vibration due to the conversion as mentioned above. A broad absorption band in 

the region of 3500 cm
-1

 is assigned to O-H vibration, which may be due to the 

presence of the remaining water, ethanol and unreacted O-H group inside the 

precursor gel. Water and ethanol are expected to evaporate or disappear from 

the film during post-baking process after photopolymerization step, but the 

unreacted hydroxyl (O-H) groups may be still remain present in the film. This 

O-H vibration band therefore becomes smaller but still remains in the FTIR 

spectrum taken after photopolymerization in methacrylic group. 

 

Figure 2 FTIR spectra of precursor gel after photopolymerization (red line, 

upper side spectrum) and precursor before photopolymerization (black line, 

lower side spectrum). 

3.2 Grating Fabrication and Characterizations 

Grating fabrication was performed in laser interference setup, as described in 
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the methodology section, at certain incident angle (θi) of interfering laser beams 

with respect to the normal of the precursor gel film surface. The dependence of 

grating periodicity (Λ) on incident angle and curing wavelength (the interfering 

laser beams wavelength)is given by: 

 
 2sin

curing

i




    (1) 

Using that formula, the grating periodicities were estimated to be about 1022, 

454, 420, 391, and 366 nm for incident angles of 10°, 23°, 25°, 27°, and 29°, 

respectively. Figure 3(a) and 3(b) shows the AFM images of a grating structure 

prepared at the incident angle of interference laser of 10°. This grating has 

periodicity of about 1000 nm, which is close to the estimated value above. 

As depicted from the AFM images, sinusoidal corrugation structure was formed 

with the grating depth of about 20-45 nm. The formation mechanism of this 

corrugated grating structure is still not well understood at this stage, however 

we suppose the formation may occur through some possible mechanisms as 

followings. The first possibility may be related with polymerization induced 

volume shrinkage. At the bright region, high laser intensity produces high 

degree of photopolymerization which causes volume shrinkage as the precursor 

gel changing into solid. On the other hand, at the dark region, 

photopolymerization occurs with relatively low reaction rate so that there is no 

significant volume shrinkage. As the bright region suffers more volume 

shrinkage, the bright region would create valley while the dark region will 

create bump. However, there is also other possible formation mechanism that 

includes monomer diffusion during the polymerization. As the monomer 

concentration quickly vanishes at the bright region due to high polymerization 

rate, this condition leads to the diffusion of monomer from dark region to bright 

region. The monomers are then attracted and accumulated at the bright region. 

This mechanism, which is called as photo-induced swelling, results in bump 

formation at the bright region but valley formation at the dark region [18,19]. 

It should be also noted that, however, in this work the grating structure was 

formed by using pulse laser energy of about 20 mJ/pulse, which is equivalent to 

light power of about 2 MW/cm
2
 per pulse. This fabrication condition is 

significantly different from that found in the fabrication method used in the 

previous reports [18,19]. A light beam with such optical power may 

theoretically generate optical radiation force in the order of 10
-3

 N/cm
2  

[24,25]. 

Regarding to this fact, though it is still speculative at the moment, one may also 

suggest the mechanism formation due to radiation pressure effect. When the 

interfering laser beams with high laser impinge on the surface of the precursor 

gel film, the light momentum will be transferred to the precursor molecules. If 
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(a) (b) 

the precursor gels is considered to be composed of nano-sizeparticulates, [14] 

this momentum transfer may lead to the displacement of those precursor gel 

particulates in the same direction with the laser beam propagation direction. 

However, in the same time, the laser beam also induces cross linking 

photopolymerization and prevent the precursor to move back. This process 

creates bump at the dark region and valley at the bright region, producing a 

corrugation structure mimicking the intensity profile of interfering laser beams. 

Such process will not happen in SU-8 resin because the radiation force is not 

sufficiently enough to displace these resin molecules which have much larger 

molecular weight. Further specific experimental works, however, are required to 

verify which one of those possible mechanisms explained above actually 

responsible for the grating formation here is.  

Figure 3 (a) Atomic Force Microscopy (AFM) images of a grating fabricated at 

incident angle of laser interference beam of 10°. (b) The same image sample but 

taken in smaller scale. 

3.3 Application as Distributed Feedback Grating and Photo-

pumped Lasing 

Fabricated DBF grating evaluated in a photopumped laser configuration, which 

is optically pumped by the frequency doubled Nd-YAG pulse laser. Figure 4(a) 

shows the emission spectra measured from hybrid polymer DFB grating 

containing R6G organic laser dye. At low laser pumping energy, only 

fluorescence spectrum was observed from the sample. A thigh laser pumping 

energy, the emission spectral shape then changes indicated by much narrower 

spectral width with FWHM less than 2 nm, which is in the limit range of the 

spectrophotometer resolution (~1nm). Figure 4(b) shows that the emission 

spectral width and peak intensity start to change abruptly at the pumping laser 

intensity of about 0.1 mJ/pulse, which is the threshold pumping energy. This 

clearly indicates the generation of lasing actions in this fabricated DFB grating 

structure. The relationship between lasing wavelength, Bragg wavelength and 

grating periodicity is given by 
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lasing

2Bragg effn

m m





   (2) 

where m is the Bragg reflection order, and neff is the effective refractive index. 

As evident in Figure 4(a), lasing was observed at about 580 nm from a grating 

prepared at incident angle of 27. The observed lasing wavelength is in 

agreement with the estimated lasing wavelength calculated using Eq. (2), for m= 

2, as indicated in Table 1. This fact also indicates that the lasing occurs at the 

second order (m= 2) of Bragg reflection wavelength. 

 

 

 

 

 

 

 

 

 

 

It should be noted that the lasing performance, indicated by lasing wavelength 

and threshold energy, is critically dependent on the geometrical structure of the 

grating, such as the grating periodicity and corrugation depth. As the grating 

formation may involve volume shrinkage or photo-induced swelling 

mechanism, the deviation in geometrical structure may occur at each time of 

fabrication leading to unpredictable degree of deviation in its performance. It is 

therefore necessary to study further in separate work how to improve the 

precursor gel and the fabrication technique in order to minimize geometrical 

structure deviation. 

 

Figure 4   (a) The observation of lasing action in a hybrid polymer grating 

containingR6G laser dye, which is indicated by the narrowing of its emission 

spectral width. Fluorescence and Amplified Spontaneous Emission (ASE) 

spectra are also displayed for comparison. (b) The plots of emission peak 

intensity and emission spectral width depending on the laser pumping 

energy. 
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Table 1 The estimated grating periodicities and lasing wavelengths vs. incident 

angles used in the grating fabrication (calculated with the assumption n = 1.5). 

Incident 

Angle 

Estimated 

Periodicity (nm) 

Estimated Lasing Wavelength 

(at the 2
nd

 order Bragg wavelength)  

(nm) 

10 1022 1533 

23 454 681 

25 420 630 

27 391 586 

 

3.4 Application as Coupling Elements for Surface Plasmon 

Resonance Generation 

Surface Plasmon Resonance (SPR) is a collective oscillation of electrons at the 

flat metal surface (at the metal/dielectric interface), which is in resonant 

condition with the incoming electromagnetic or light wave. The condition for 

resonance is given by [13,14]: 

 1 2

1 2

sp oK k


 




 (3) 

where Ksp is the propagation constant of the SPR wave, while ε1 and ε2 are the 

permittivity of metal and dielectric, respectively. In this case, surface wave can 

be generated by using a prism coupler, which is constructed of a flat metal 

coated on a prism. In the present work, we fabricated SPR grating couplers that 

are constructed from a hybrid polymer grating covered by a very thin metal 

layer (approx. 50 nm) on its top surface. Such SPR grating coupler has 

attractive much attention for various bio-chemical molecular sensing 

applications [26-28]. The resonance condition for grating coupled SPR 

configuration is: 

 2
SP iK K m


 


 (4) 

where Ki is the propagation constant of the incoming light along the grating 

surface,  is the grating periodicity and m is an integer (= ±1, ±2, … ) that 

denotes the diffraction order [26]. 
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The fabricated grating, from precursor gel without addition of any laser dye 

substance, was covered by thin film silver layer with about only 50 nm in 

thickness. The grating periodicity is about 670 nm. Figure 5(a) shows the SPR 

spectrum measured for water as the dielectric layer, which is in direct contact 

with the silver layer. The spectrum shows two dips, which is typical SPR 

spectrum obtained by using grating coupled SPR configuration. This is 

distinctly different from SPR spectrum measured from SPR system with prism 

coupled configuration, which normally exhibits only one spectrum dip. In the 

case of grating coupler SPR element, the Plasmon wave suffers Bragg reflection 

leading to the formation of standing wave. Such condition creates a forbidden 

gap and splits the dispersion curve at the cross-section, as commonly observed 

in photonic crystal theory [29]. The SPR spectrum now therefore exhibits two 

SPR dips. The spectral shape of the dip is much narrower and deeper in 

comparison to that of measured by using just flat metal as in prism-coupled SPR 

system. Figure 5(b) the shifting of SPR dip from 691 nm to 695 nm and 702 nm 

with increasing glucose concentration in water from 0 g/dL to 10 g/dl and 20 

g/dL, respectively. This concentration change is corresponding to the change of 

solution refractive index from 1.30 to 1.32 and 1.34, respectively. This result 

demonstrates that the fabricated grating performs well as a SPR grating coupler, 

which can be applied in the refractive index measurement applications.  

 

Figure 5     (a) The spectrum of Surface Plasmon Resonance (SPR) measured 

by using SPR grating coupler prepared in this work from hybrid polymer 

precursor gel. (b) The shifts of the SPR dip depending on the refractive index 

of dielectric solution which is in contact with this SPR grating coupler 

element. 

400 500 600 700 800
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
e
fl
e
c
ta

n
c
e
 (

u
n
it
le

s
s
)

Wavelength (nm)
600 625 650 675 700 725 750 775 800

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
e

fl
e

c
ta

n
c
e

 (
u

n
it
le

s
s
)

Wavelength (nm)

 water

 glucose in water (10 gr/dL)

 glucose in water (20 gr/dL)

(a) (b) 

 



 Applications of Organic-Inorganic Hybrid Polymers 217 
 

4 Conclusion 

Precursor gels of hybrid polymers containing polymerizable methacrylate group 

have been prepared via sol-gel route. Grating structure has been successfully 

fabricated on the surface of this hybrid polymer film by laser interference 

technique utilizing high power UV pulse laser. The resulted gratings have 

sinusoidal corrugated structure with periodicity in the range 400-1000 nm, 

which can be selected by adjusting the incident angle. The mechanism 

formation still cannot clearly verified at this stage, but it may involve an 

interesting mechanism by considering the time duration required for the grating 

formation. The applications of those fabricated grating structures for generation 

of photopumped lasing and SPR wave have been also successfully 

demonstrated. The present experimental results thus also demonstrate the 

feasibility of this hybrid polymer as a building material for nanostructured 

optical/photonic components. 
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